Groups whose geodesics are locally testable (1111.0775v1)
Abstract: A regular set of words is ($k$-)locally testable if membership of a word in the set is determined by the nature of its subwords of some bounded length $k$. In this article we study groups for which the set of all geodesic words with respect to some generating set is ($k$-)locally testable, and we call such groups ($k$-)locally testable. We show that a group is \klt{1} if and only if it is free abelian. We show that the class of ($k$-)locally testable groups is closed under taking finite direct products. We show also that a locally testable group has finitely many conjugacy classes of torsion elements. Our work involved computer investigations of specific groups, for which purpose we implemented an algorithm in \GAP\ to compute a finite state automaton with language equal to the set of all geodesics of a group (assuming that this language is regular), starting from a shortlex automatic structure. We provide a brief description of that algorithm.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.