Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Learning with Preference Feedback (1111.0712v1)

Published 3 Nov 2011 in cs.LG and cs.AI

Abstract: We propose a new online learning model for learning with preference feedback. The model is especially suited for applications like web search and recommender systems, where preference data is readily available from implicit user feedback (e.g. clicks). In particular, at each time step a potentially structured object (e.g. a ranking) is presented to the user in response to a context (e.g. query), providing him or her with some unobserved amount of utility. As feedback the algorithm receives an improved object that would have provided higher utility. We propose a learning algorithm with provable regret bounds for this online learning setting and demonstrate its effectiveness on a web-search application. The new learning model also applies to many other interactive learning problems and admits several interesting extensions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (17)

Summary

We haven't generated a summary for this paper yet.