Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian Cluster Finder: Clusters in the CFHTLS Archive Research Survey

Published 31 Oct 2011 in astro-ph.CO | (1111.0013v1)

Abstract: The detection of galaxy clusters in present and future surveys enables measuring mass-to-light ratios, clustering properties, galaxy cluster abundances and therefore, constraining cosmological parameters. We present a new technique for detecting galaxy clusters, which is based on the Matched Filter Algorithm from a Bayesian point of view. The method is able to determine the position, redshift and richness of the cluster through the maximization of a filter depending on galaxy luminosity, density and photometric redshift combined with a galaxy cluster prior that accounts for color-magnitude relations and BCG-redshift relation. We tested the algorithm through realistic mock galaxy catalogs, revealing that the detections are 100% complete and 80% pure for clusters up to z $<$1.2 and richer than $\Lambda_{CL}>$20 (Abell Richness $\sim$0, M$\sim4\times10{14} M_{\odot}$). The completeness and purity remains approximately the same if we do not include the prior information, implying that this method is able to detect galaxy cluster with and without a well defined red sequence. We applied the algorithm to the CFHTLS Archive Research Survey (CARS) data, recovering similar detections as previously published using the same or deeper data plus additional clusters which appear to be real.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.