Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Think continuous: Markovian Gaussian models in spatial statistics (1110.6796v1)

Published 31 Oct 2011 in math.ST, stat.CO, and stat.TH

Abstract: Gaussian Markov random fields (GMRFs) are frequently used as computationally efficient models in spatial statistics. Unfortunately, it has traditionally been difficult to link GMRFs with the more traditional Gaussian random field models as the Markov property is difficult to deploy in continuous space. Following the pioneering work of Lindgren et al. (2011), we expound on the link between Markovian Gaussian random fields and GMRFs. In particular, we discuss the theoretical and practical aspects of fast computation with continuously specified Markovian Gaussian random fields, as well as the clear advantages they offer in terms of clear, parsimonious and interpretable models of anisotropy and non-stationarity.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube