Softening the Complexity of Entropic Motion on Curved Statistical Manifolds
Abstract: We study the information geometry and the entropic dynamics of a 3D Gaussian statistical model. We then compare our analysis to that of a 2D Gaussian statistical model obtained from the higher-dimensional model via introduction of an additional information constraint that resembles the quantum mechanical canonical minimum uncertainty relation. We show that the chaoticity (temporal complexity) of the 2D Gaussian statistical model, quantified by means of the Information Geometric Entropy (IGE) and the Jacobi vector field intensity, is softened with respect to the chaoticity of the 3D Gaussian statistical model.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.