Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A positive mass theorem for Lipschitz metrics with small singular sets (1110.6485v1)

Published 28 Oct 2011 in math.DG

Abstract: We prove that the positive mass theorem applies to Lipschitz metrics as long as the singular set is low-dimensional, with no other conditions on the singular set. More precisely, let $g$ be an asymptotically flat Lipschitz metric on a smooth manifold $Mn$, such that $n<8$ or $M$ is spin. As long as $g$ has bounded $C2$ norm and nonnegative scalar curvature on the complement of some singular set $S$ of Minkowski dimension less than $n/2$, the mass of $g$ must be nonnegative. We conjecture that the dimension of $S$ need only be less than $n-1$ for the result to hold. These results complement and contrast with earlier results of H. Bray, P. Miao, and Y. Shi and L.-F. Tam, where $S$ is a hypersurface.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.