2000 character limit reached
Toward explicit formulas for higher representation numbers of quadratic forms (1110.6346v1)
Published 28 Oct 2011 in math.NT
Abstract: It is known that average Siegel theta series lie in the space of Siegel Eisenstein series. Also, every lattice equipped with an even integral quadratic form lies in a maximal lattice. Here we consider average Siegel theta series of degree 2 attached to maximal lattices; we construct maps for which the average theta series is an eigenform. We evaluate the action of these maps on Siegel Eisenstein series of degree 2 (without knowing their Fourier coefficients), and then realise the average theta series as an explicit linear combination of the Eisenstein series.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.