Papers
Topics
Authors
Recent
2000 character limit reached

Multiple Gaussian Process Models (1110.5238v1)

Published 24 Oct 2011 in stat.ML

Abstract: We consider a Gaussian process formulation of the multiple kernel learning problem. The goal is to select the convex combination of kernel matrices that best explains the data and by doing so improve the generalisation on unseen data. Sparsity in the kernel weights is obtained by adopting a hierarchical Bayesian approach: Gaussian process priors are imposed over the latent functions and generalised inverse Gaussians on their associated weights. This construction is equivalent to imposing a product of heavy-tailed process priors over function space. A variational inference algorithm is derived for regression and binary classification.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.