Papers
Topics
Authors
Recent
2000 character limit reached

Invariants of spectral curves and intersection theory of moduli spaces of complex curves

Published 13 Oct 2011 in math-ph, hep-th, and math.MP | (1110.2949v1)

Abstract: To any spectral curve S, we associate a topological class {\Lambda}(S) in a moduli space Mb_{g,n} of "b-colored" stable Riemann surfaces of given topology (genus g, n boundaries), whose integral coincides with the topological recursion invariants W_{g,n}(S) of the spectral curve S. This formula can be viewed as a generalization of the ELSV formula (whose spectral curve is the Lambert function and the associated class is the Hodge class), or Marino-Vafa formula (whose spectral curve is the mirror curve of the framed vertex, and the associated class is the product of 3 Hodge classes), but for an arbitrary spectral curve. In other words, to a B-model (i.e. a spectral curve) we systematically associate a mirror A-model (integral in a moduli space of "colored" Riemann surfaces). We find that the mirror map, i.e. the relationship between the A-model moduli and B-model moduli, is realized by the Laplace transform.

Citations (129)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.