The Double Scaling Limit in Arbitrary Dimensions: A Toy Model (1110.2460v1)
Abstract: Colored tensor models generalize matrix models in arbitrary dimensions yielding a statistical theory of random higher dimensional topological spaces. They admit a 1/N expansion dominated by graphs of spherical topology. The simplest tensor model one can consider maps onto a rectangular matrix model with skewed scalings. We analyze this simplest toy model and show that it exhibits a family of multi critical points and a novel double scaling limit. We show in D=3 dimensions that only graphs representing spheres contribute in the double scaling limit, and argue that similar results hold for any dimension.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.