Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Sine-square deformation of solvable spin chains and conformal field theories (1110.2459v3)

Published 11 Oct 2011 in cond-mat.stat-mech, cond-mat.str-el, hep-th, and quant-ph

Abstract: We study solvable spin chains, one-dimensional massless Dirac fermions, and conformal field theories (CFTs) with sine-square deformation (SSD), in which the Hamiltonian density is modulated by the function $f(x)=\sin2 (\pi x/\ell)$, where $x$ is the position and $\ell$ is the length of the system. For the XY chain and the transverse field Ising chain at criticality, it is shown that the ground state of an open system with SSD is identical to that of a uniform chain with periodic boundary conditions. The same holds for the massless Dirac fermions with SSD, corresponding to the continuum limit of the gapless XY chain. For general CFTs, we find that the Hamiltonian of a system with SSD has an expression in terms of the generators of the Virasoro algebra. This allows us to show that the vacuum state is an exact eigenstate of the sine-square deformed Hamiltonian. Furthermore, for a restricted class of CFTs associated with affine Lie (Kac-Moody) algebras, including $c=1$ Gaussian CFT, we prove that the vacuum is an exact ground state of the deformed Hamiltonian. This explains why the SSD has succeeded in suppressing boundary effects in one-dimensional critical systems, as observed in previous numerical studies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube