Envelopes and refinements in categories, with applications to Functional Analysis (1110.2013v16)
Abstract: An envelope in a category is a construction that generalizes the operations of "exterior completion", like completion of a locally convex space, or Stone-\v{C}ech compactification of a topological space, or universal enveloping algebra of a Lie algebra. Dually, a refinement generalizes operations of "interior enrichment", like bornologification (or saturation) of a locally convex space, or simply connected covering of a Lie group. In this paper we define envelopes and refinements in abstract categories and discuss the conditions under which these constructions exist and are functors. The aim of the exposition is to build a fundament for duality theories of non-commutative groups based on the idea of envelope. The advantage of this approach is that in the arising theories the analogs of group algebras are Hopf algebras. At the same time the classical Fourier and Gelfand transforms are interpreted as envelopes with respect to the prearranged classes of algebras.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.