Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nearly Minimax One-Sided Mixture-Based Sequential Tests (1110.0902v2)

Published 5 Oct 2011 in math.ST, stat.ME, and stat.TH

Abstract: We focus on one-sided, mixture-based stopping rules for the problem of sequential testing a simple null hypothesis against a composite alternative. For the latter, we consider two cases---either a discrete alternative or a continuous alternative that can be embedded into an exponential family. For each case, we find a mixture-based stopping rule that is nearly minimax in the sense of minimizing the maximal Kullback-Leibler information. The proof of this result is based on finding an almost Bayes rule for an appropriate sequential decision problem and on high-order asymptotic approximations for the performance characteristics of arbitrary mixture-based stopping times. We also evaluate the asymptotic performance loss of certain intuitive mixture rules and verify the accuracy of our asymptotic approximations with simulation experiments.

Summary

We haven't generated a summary for this paper yet.