Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rényi Information Measures for Spectral Change Detection (1109.5876v1)

Published 27 Sep 2011 in cs.SD

Abstract: Change detection within an audio stream is an important task in several domains, such as classification and segmentation of a sound or of a music piece, as well as indexing of broadcast news or surveillance applications. In this paper we propose two novel methods for spectral change detection without any assumption about the input sound: they are both based on the evaluation of information measures applied to a time- frequency representation of the signal, and in particular to the spectrogram. The class of measures we consider, the R\'enyi entropies, are obtained by extending the Shannon entropy definition: a biasing of the spectrogram coefficients is realized through the dependence of such measures on a parameter, which allows refined results compared to those obtained with standard divergences. These methods provide a low computational cost and are well-suited as a support for higher level analysis, segmentation and classification algorithms.

Citations (16)

Summary

We haven't generated a summary for this paper yet.