Papers
Topics
Authors
Recent
2000 character limit reached

On the structure of Borel stable abelian subalgebras in infinitesimal symmetric spaces

Published 21 Sep 2011 in math.RT and math.CO | (1109.4501v2)

Abstract: Let g=g_0+g_1 be a Z_2-graded Lie algebra. We study the posets of abelian subalgebras of g_1 which are stable w.r.t. a Borel subalgebra of g_0. In particular, we find out a natural parametrization of maximal elements and dimension formulas for them. We recover as special cases several results of Kostant, Panyushev, Suter.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.