Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Birings and plethories of integer-valued polynomials (1109.3848v3)

Published 18 Sep 2011 in math.AC

Abstract: Let $A$ and $B$ be commutative rings with identity. An {\it $A$-$B$-biring} is an $A$-algebra $S$ together with a lift of the functor $Hom_A(S,-)$ from $A$-algebras to sets to a functor from $A$-algebras to $B$-algebras. An {\it $A$-plethory} is a monoid object in the monoidal category, equipped with the composition product, of $A$-$A$-birings. The polynomial ring $A[X]$ is an initial object in the category of such structures. The $D$-algebra $Int(D)$ has such a structure if $D = A$ is a domain such that the natural $D$-algebra homomorphism $\theta_n: {\bigotimes_D}_{i = 1}n Int(D) \longrightarrow Int(Dn)$ is an isomorphism for $n = 2$ and injective for $n \leq 4$. This holds in particular if $\theta_n$ is an isomorphism for all $n$, which in turn holds, for example, if $D$ is a Krull domain or more generally a TV PVMD. In these cases we also examine properties of the functor $Hom_D(Int(D),-)$ from $D$-algebras to $D$-algebras, which we hope to show is a new object worthy of investigation in the theory of integer-valued polynomials.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.