Papers
Topics
Authors
Recent
2000 character limit reached

Non-collapsing in fully nonlinear curvature flows

Published 10 Sep 2011 in math.DG and math.AP | (1109.2200v1)

Abstract: We consider embedded hypersurfaces evolving by fully nonlinear flows in which the normal speed of motion is a homogeneous degree one, concave or convex function of the principal curvatures, and prove a non-collapsing estimate: Precisely, the function which gives the curvature of the largest interior sphere touching the hypersurface at each point is a subsolution of the linearized flow equation if the speed is concave. If the speed is convex then there is an analogous statement for exterior spheres. In particular, if the hypersurface moves with positive speed and the speed is concave in the principal curvatures, then the curvature of the largest touching interior sphere is bounded by a multiple of the speed as long as the solution exists. The proof uses a maximum principle applied to a function of two points on the evolving hypersurface. We illustrate the techniques required for dealing with such functions in a proof of the known containment principle for flows of hypersurfaces.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.