Papers
Topics
Authors
Recent
2000 character limit reached

Algebraic & definable closure in free groups

Published 29 Aug 2011 in math.GR and math.LO | (1108.5641v2)

Abstract: We study algebraic closure and its relation with definable closure in free groups and more generally in torsion-free hyperbolic groups. Given a torsion-free hyperbolic group G and a nonabelian subgroup A of G, we describe G as a constructible group from the algebraic closure of A along cyclic subgroups. In particular, it follows that the algebraic closure of A is finitely generated, quasiconvex and hyperbolic. Suppose that G is free. Then the definable closure of A is a free factor of the algebraic closure of A and the rank of these groups is bounded by that of G. We prove that the algebraic closure of A coincides with the vertex group containing A in the generalized cyclic JSJ-decomposition of G relative to A. If the rank of G is bigger than 4, then G has a subgroup A such that the definable closure of A is a proper subgroup of the algebraic closure of A. This answers a question of Sela.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.