Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 171 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Phase Transition in Dually Weighted Colored Tensor Models (1108.5389v2)

Published 26 Aug 2011 in hep-th, gr-qc, math-ph, and math.MP

Abstract: Tensor models are a generalization of matrix models (their graphs being dual to higher-dimensional triangulations) and, in their colored version, admit a 1/N expansion and a continuum limit. We introduce a new class of colored tensor models with a modified propagator which allows us to associate weight factors to the faces of the graphs, i.e. to the bones (or hinges) of the triangulation, where curvature is concentrated. They correspond to dynamical triangulations in three and higher dimensions with generalized amplitudes. We solve analytically the leading order in 1/N of the most general model in arbitrary dimensions. We then show that a particular model, corresponding to dynamical triangulations with a non-trivial measure factor, undergoes a third-order phase transition in the continuum characterized by a jump in the susceptibility exponent.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.