Papers
Topics
Authors
Recent
2000 character limit reached

Norm resolvent convergence of singularly scaled Schrödinger operators and δ'-potentials

Published 26 Aug 2011 in math.SP, math-ph, and math.MP | (1108.5345v2)

Abstract: For a real-valued function V from the Faddeev-Marchenko class, we prove the norm resolvent convergence, as \epsilon goes to 0, of a family S_\epsilon of one-dimensional Schr\"odinger operators on the line of the form S_\epsilon:= -D2 + \epsilon{-2} V(x/\epsilon). Under certain conditions the family of potentials converges in the sense of distributions to the first derivative of the Dirac delta-function, and then the limit of S_\epsilon might be considered as a "physically motivated" interpretation of the one-dimensional Schr\"odinger operator with potential \delta'.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.