Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sharp Isoperimetric Inequalities and Model Spaces for Curvature-Dimension-Diameter Condition (1108.4609v3)

Published 23 Aug 2011 in math.DG, math.FA, and math.MG

Abstract: We obtain new sharp isoperimetric inequalities on a Riemannian manifold equipped with a probability measure, whose generalized Ricci curvature is bounded from below (possibly negatively), and generalized dimension and diameter of the convex support are bounded from above (possibly infinitely). Our inequalities are sharp for sets of any given measure and with respect to all parameters (curvature, dimension and diameter). Moreover, for each choice of parameters, we identify the model spaces which are extremal for the isoperimetric problem. In particular, we recover the Gromov--L\'evy and Bakry--Ledoux isoperimetric inequalities, which state that whenever the curvature is strictly positively bounded from below, these model spaces are the $n$-sphere and Gauss space, corresponding to generalized dimension being $n$ and $\infty$, respectively. In all other cases, which seem new even for the classical Riemannian-volume measure, it turns out that there is no single model space to compare to, and that a simultaneous comparison to a natural one parameter family of model spaces is required, nevertheless yielding a sharp result.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.