Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Algorithms for Ridge and Lasso Regression with Partially Observed Attributes (1108.4559v2)

Published 23 Aug 2011 in cs.LG

Abstract: We consider the most common variants of linear regression, including Ridge, Lasso and Support-vector regression, in a setting where the learner is allowed to observe only a fixed number of attributes of each example at training time. We present simple and efficient algorithms for these problems: for Lasso and Ridge regression they need the same total number of attributes (up to constants) as do full-information algorithms, for reaching a certain accuracy. For Support-vector regression, we require exponentially less attributes compared to the state of the art. By that, we resolve an open problem recently posed by Cesa-Bianchi et al. (2010). Experiments show the theoretical bounds to be justified by superior performance compared to the state of the art.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.