Complexity of a Single Face in an Arrangement of s-Intersecting Curves
Abstract: Consider a face F in an arrangement of n Jordan curves in the plane, no two of which intersect more than s times. We prove that the combinatorial complexity of F is O(\lambda_s(n)), O(\lambda_{s+1}(n)), and O(\lambda_{s+2}(n)), when the curves are bi-infinite, semi-infinite, or bounded, respectively; \lambda_k(n) is the maximum length of a Davenport-Schinzel sequence of order k on an alphabet of n symbols. Our bounds asymptotically match the known worst-case lower bounds. Our proof settles the still apparently open case of semi-infinite curves. Moreover, it treats the three cases in a fairly uniform fashion.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.