2000 character limit reached
Self-Organizing Mixture Networks for Representation of Grayscale Digital Images
Published 18 Aug 2011 in cs.AI | (1108.3757v1)
Abstract: Self-Organizing Maps are commonly used for unsupervised learning purposes. This paper is dedicated to the certain modification of SOM called SOMN (Self-Organizing Mixture Networks) used as a mechanism for representing grayscale digital images. Any grayscale digital image regarded as a distribution function can be approximated by the corresponding Gaussian mixture. In this paper, the use of SOMN is proposed in order to obtain such approximations for input grayscale images in unsupervised manner.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.