Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Explicit error bounds for Markov chain Monte Carlo (1108.3201v2)

Published 16 Aug 2011 in math.PR and math.NA

Abstract: We prove explicit, i.e. non-asymptotic, error bounds for Markov chain Monte Carlo methods. The problem is to compute the expectation of a function f with respect to a measure {\pi}. Different convergence properties of Markov chains imply different error bounds. For uniformly ergodic and reversible Markov chains we prove a lower and an upper error bound with respect to the L2 -norm of f . If there exists an L2 -spectral gap, which is a weaker convergence property than uniform ergodicity, then we show an upper error bound with respect to the Lp -norm of f for p > 2. Usually a burn-in period is an efficient way to tune the algorithm. We provide and justify a recipe how to choose the burn-in period. The error bounds are applied to the problem of the integration with respect to a possibly unnormalized density. More precise, we consider the integration with respect to log-concave densities and the integration over convex bodies. By the use of the Metropolis algorithm based on a ball walk and the hit-and-run algorithm it is shown that both problems are polynomial tractable.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube