2000 character limit reached
Chebyshev curves, free resolutions and rational curve arrangements (1108.0798v3)
Published 3 Aug 2011 in math.AG and math.AC
Abstract: First we construct a free resolution for the Milnor (or Jacobian) algebra $M(f)$ of a complex projective Chebyshev plane curve $\CC_d:f=0$ of degree $d$. In particular, this resolution implies that the dimensions of the graded components $M(f)_k$ are constant for $k \geq 2d-3.$ Then we show that the Milnor algebra of a nodal plane curve $C$ has such a behaviour if and only if all the irreducible components of $C$ are rational. For the Chebyshev curves, all of these components are in addition smooth, hence they are lines or conics and explicit factorizations are given in this case.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.