Papers
Topics
Authors
Recent
Search
2000 character limit reached

Numerical solutions of the Dicke Hamiltonian

Published 2 Aug 2011 in quant-ph | (1108.0703v1)

Abstract: We study the numerical solutions of the Dicke Hamiltonian, which describes a system of many two level atoms interacting with a monochromatic radiation field into a cavity. The Dicke model is an example of a quantum collective behavior which shows superradiant quantum phase transitions in the thermodynamic limit. Results obtained employing two different bases are compared. Both of them use the pseudospin basis to describe the atomic states. For the photon states we use in one case Fock states, while in the other case we use a basis built over a particular coherent state, associated to each atomic state. It is shown that, when the number of atoms increases, the description of the ground state of the system in the superradiant phase requires an equivalent number of photons to be included. This imposes a strong limit to the states that can be calculated using Fock states, while the dimensionality needed to obtain convergent results in the other basis decreases when the atomic number increases, allowing calculations that are very difficult in the Fock basis. Naturally, it reduces also the computing time, economizing computing resources. We show results for the energy, the photon number and the number of excited atoms, for the ground and the first excited state.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.