Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Selecting Attributes for Sport Forecasting using Formal Concept Analysis (1107.5474v2)

Published 27 Jul 2011 in cs.AI

Abstract: In order to address complex systems, apply pattern recongnition on their evolution could play an key role to understand their dynamics. Global patterns are required to detect emergent concepts and trends, some of them with qualitative nature. Formal Concept Analysis (FCA) is a theory whose goal is to discover and to extract Knowledge from qualitative data. It provides tools for reasoning with implication basis (and association rules). Implications and association rules are usefull to reasoning on previously selected attributes, providing a formal foundation for logical reasoning. In this paper we analyse how to apply FCA reasoning to increase confidence in sports betting, by means of detecting temporal regularities from data. It is applied to build a Knowledge-Based system for confidence reasoning.

Citations (5)

Summary

We haven't generated a summary for this paper yet.