Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Limit measures of inhomogeneous discrete-time quantum walks in one dimension (1107.4462v3)

Published 22 Jul 2011 in quant-ph

Abstract: We treat three types of measures of the quantum walk (QW) with the spatial perturbation at the origin, which was introduced by [1]: time averaged limit measure, weak limit measure, and stationary measure. From the first two measures, we see a coexistence of the ballistic and localized behaviors in the walk as a sequential result following [1,2]. We propose a universality class of QWs with respect to weak limit measure. It is shown that typical spatial homogeneous QWs with ballistic spreading belong to the universality class. We find that the walk treated here with one defect also belongs to the class. We mainly consider the walk starting from the origin. However when we remove this restriction, we obtain a stationary measure of the walk. As a consequence, by choosing parameters in the stationary measure, we get the uniform measure as a stationary measure of the Hadamard walk and a time averaged limit measure of the walk with one defect respectively.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.