Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A nodal domain theorem and a higher-order Cheeger inequality for the graph $p$-Laplacian (1602.05567v2)

Published 17 Feb 2016 in math.SP and cs.DM

Abstract: We consider the nonlinear graph $p$-Laplacian and its set of eigenvalues and associated eigenfunctions of this operator defined by a variational principle. We prove a nodal domain theorem for the graph $p$-Laplacian for any $p\geq 1$. While for $p>1$ the bounds on the number of weak and strong nodal domains are the same as for the linear graph Laplacian ($p=2$), the behavior changes for $p=1$. We show that the bounds are tight for $p\geq 1$ as the bounds are attained by the eigenfunctions of the graph $p$-Laplacian on two graphs. Finally, using the properties of the nodal domains, we prove a higher-order Cheeger inequality for the graph $p$-Laplacian for $p>1$. If the eigenfunction associated to the $k$-th variational eigenvalue of the graph $p$-Laplacian has exactly $k$ strong nodal domains, then the higher order Cheeger inequality becomes tight as $p\rightarrow 1$.

Citations (40)

Summary

We haven't generated a summary for this paper yet.