Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A trajectorial interpretation of the dissipations of entropy and Fisher information for stochastic differential equations (1107.3300v3)

Published 17 Jul 2011 in math.PR

Abstract: The dissipation of general convex entropies for continuous time Markov processes can be described in terms of backward martingales with respect to the tail filtration. The relative entropy is the expected value of a backward submartingale. In the case of (non necessarily reversible) Markov diffusion processes, we use Girsanov theory to explicit the Doob-Meyer decomposition of this submartingale. We deduce a stochastic analogue of the well known entropy dissipation formula, which is valid for general convex entropies, including the total variation distance. Under additional regularity assumptions, and using It^o's calculus and ideas of Arnold, Carlen and Ju \cite{Arnoldcarlenju}, we obtain moreover a new Bakry Emery criterion which ensures exponential convergence of the entropy to $0$. This criterion is non-intrisic since it depends on the square root of the diffusion matrix, and cannot be written only in terms of the diffusion matrix itself. We provide examples where the classic Bakry Emery criterion fails, but our non-intrisic criterion applies without modifying the law of the diffusion process.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.