Renorming divergent perpetuities (1107.2753v1)
Abstract: We consider a sequence of random variables $(R_n)$ defined by the recurrence $R_n=Q_n+M_nR_{n-1}$, $n\ge1$, where $R_0$ is arbitrary and $(Q_n,M_n)$, $n\ge1$, are i.i.d. copies of a two-dimensional random vector $(Q,M)$, and $(Q_n,M_n)$ is independent of $R_{n-1}$. It is well known that if $E{\ln}|M|<0$ and $E{\ln+}|Q|<\infty$, then the sequence $(R_n)$ converges in distribution to a random variable $R$ given by $R\stackrel{d}{=}\sum_{k=1}{\infty}Q_k\prod_{j=1}{k-1}M_j$, and usually referred to as perpetuity. In this paper we consider a situation in which the sequence $(R_n)$ itself does not converge. We assume that $E{\ln}|M|$ exists but that it is non-negative and we ask if in this situation the sequence $(R_n)$, after suitable normalization, converges in distribution to a non-degenerate limit.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.