Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Second moment method for a family of boolean CSP (1107.2737v2)

Published 14 Jul 2011 in cs.DM

Abstract: The estimation of phase transitions in random boolean Constraint Satisfaction Problems (CSP) is based on two fundamental tools: the first and second moment methods. While the first moment method on the number of solutions permits to compute upper bounds on any boolean CSP, the second moment method used for computing lower bounds proves to be more tricky and in most cases gives only the trivial lower bound 0. In this paper, we define a subclass of boolean CSP covering the monotone versions of many known NP-Complete boolean CSPs. We give a method for computing non trivial lower bounds for any member of this subclass. This is achieved thanks to an application of the second moment method to some selected solutions called characteristic solutions that depend on the boolean CSP considered. We apply this method with a finer analysis to establish that the threshold $r_{k}$ (ratio : #constrains/#variables) of monotone 1-in-k-SAT is $\log k/k\leq r_{k}\leq\log{2}k/k$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.