Papers
Topics
Authors
Recent
2000 character limit reached

The two-stage dynamics in the Fermi-Pasta-Ulam problem: from regular to diffusive behavior

Published 13 Jul 2011 in nlin.CD and nlin.SI | (1107.2626v2)

Abstract: A numerical and analytical study of the relaxation to equilibrium of both the Fermi-Pasta-Ulam (FPU) alpha-model and the integrable Toda model, when the fundamental mode is initially excited, is reported. We show that the dynamics of both systems is almost identical on the short term, when the energies of the initially unexcited modes grow in geometric progression with time, through a secular avalanche process. At the end of this first stage of the dynamics the time-averaged modal energy spectrum of the Toda system stabilizes to its final profile, well described, at low energy, by the spectrum of a q-breather. The Toda equilibrium state is clearly shown to describe well the long-living quasi-state of the FPU system. On the long term, the modal energy spectrum of the FPU system slowly detaches from the Toda one by a diffusive-like rising of the tail modes, and eventually reaches the equilibrium flat shape. We find a simple law describing the growth of tail modes, which enables us to estimate the time-scale to equipartition of the FPU system, even when, at small energies, it becomes unobservable.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.