Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A tight colored Tverberg theorem for maps to manifolds (1107.1904v1)

Published 10 Jul 2011 in math.CO and math.AT

Abstract: We prove that any continuous map of an N-dimensional simplex Delta_N with colored vertices to a d-dimensional manifold M must map r points from disjoint rainbow faces of Delta_N to the same point in M: For this we have to assume that N \geq (r-1)(d+1), no r vertices of Delta_N get the same color, and our proof needs that r is a prime. A face of Delta_N is a rainbow face if all vertices have different colors. This result is an extension of our recent "new colored Tverberg theorem", the special case of M=Rd. It is also a generalization of Volovikov's 1996 topological Tverberg theorem for maps to manifolds, which arises when all color classes have size 1 (i.e., without color constraints); for this special case Volovikov's proof, as well as ours, work when r is a prime power.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.