Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bayesian experimental design for the active nitridation of graphite by atomic nitrogen

Published 7 Jul 2011 in physics.data-an, cs.IT, math.IT, and stat.AP | (1107.1445v1)

Abstract: The problem of optimal data collection to efficiently learn the model parameters of a graphite nitridation experiment is studied in the context of Bayesian analysis using both synthetic and real experimental data. The paper emphasizes that the optimal design can be obtained as a result of an information theoretic sensitivity analysis. Thus, the preferred design is where the statistical dependence between the model parameters and observables is the highest possible. In this paper, the statistical dependence between random variables is quantified by mutual information and estimated using a k-nearest neighbor based approximation. It is shown, that by monitoring the inference process via measures such as entropy or Kullback-Leibler divergence, one can determine when to stop the data collection process. The methodology is applied to select the most informative designs on both a simulated data set and on an experimental data set, previously published in the literature. It is also shown that the sequential Bayesian analysis used in the experimental design can also be useful in detecting conflicting information between measurements and model predictions.

Citations (56)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.