Papers
Topics
Authors
Recent
2000 character limit reached

Application of Predictive Model Selection to Coupled Models (1107.0927v1)

Published 5 Jul 2011 in stat.AP, cs.IT, math.IT, and physics.data-an

Abstract: A predictive Bayesian model selection approach is presented to discriminate coupled models used to predict an unobserved quantity of interest (QoI). The need for accurate predictions arises in a variety of critical applications such as climate, aerospace and defense. A model problem is introduced to study the prediction yielded by the coupling of two physics/sub-components. For each single physics domain, a set of model classes and a set of sensor observations are available. A goal-oriented algorithm using a predictive approach to Bayesian model selection is then used to select the combination of single physics models that best predict the QoI. It is shown that the best coupled model for prediction is the one that provides the most robust predictive distribution for the QoI.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.