Papers
Topics
Authors
Recent
2000 character limit reached

Abstraction Super-structuring Normal Forms: Towards a Theory of Structural Induction

Published 3 Jul 2011 in cs.AI, cs.FL, and cs.LG | (1107.0434v1)

Abstract: Induction is the process by which we obtain predictive laws or theories or models of the world. We consider the structural aspect of induction. We answer the question as to whether we can find a finite and minmalistic set of operations on structural elements in terms of which any theory can be expressed. We identify abstraction (grouping similar entities) and super-structuring (combining topologically e.g., spatio-temporally close entities) as the essential structural operations in the induction process. We show that only two more structural operations, namely, reverse abstraction and reverse super-structuring (the duals of abstraction and super-structuring respectively) suffice in order to exploit the full power of Turing-equivalent generative grammars in induction. We explore the implications of this theorem with respect to the nature of hidden variables, radical positivism and the 2-century old claim of David Hume about the principles of connexion among ideas.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.