Stable Restoration and Separation of Approximately Sparse Signals
Abstract: This paper develops new theory and algorithms to recover signals that are approximately sparse in some general dictionary (i.e., a basis, frame, or over-/incomplete matrix) but corrupted by a combination of interference having a sparse representation in a second general dictionary and measurement noise. The algorithms and analytical recovery conditions consider varying degrees of signal and interference support-set knowledge. Particular applications covered by the proposed framework include the restoration of signals impaired by impulse noise, narrowband interference, or saturation/clipping, as well as image in-painting, super-resolution, and signal separation. Two application examples for audio and image restoration demonstrate the efficacy of the approach.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.