Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Note on Improved Loss Bounds for Multiple Kernel Learning (1106.6258v2)

Published 30 Jun 2011 in cs.LG

Abstract: In this paper, we correct an upper bound, presented in~\cite{hs-11}, on the generalisation error of classifiers learned through multiple kernel learning. The bound in~\cite{hs-11} uses Rademacher complexity and has an\emph{additive} dependence on the logarithm of the number of kernels and the margin achieved by the classifier. However, there are some errors in parts of the proof which are corrected in this paper. Unfortunately, the final result turns out to be a risk bound which has a \emph{multiplicative} dependence on the logarithm of the number of kernels and the margin achieved by the classifier.

Citations (8)

Summary

We haven't generated a summary for this paper yet.