Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Note on Improved Loss Bounds for Multiple Kernel Learning

Published 30 Jun 2011 in cs.LG | (1106.6258v2)

Abstract: In this paper, we correct an upper bound, presented in~\cite{hs-11}, on the generalisation error of classifiers learned through multiple kernel learning. The bound in~\cite{hs-11} uses Rademacher complexity and has an\emph{additive} dependence on the logarithm of the number of kernels and the margin achieved by the classifier. However, there are some errors in parts of the proof which are corrected in this paper. Unfortunately, the final result turns out to be a risk bound which has a \emph{multiplicative} dependence on the logarithm of the number of kernels and the margin achieved by the classifier.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.