Papers
Topics
Authors
Recent
2000 character limit reached

Distributional Results for Thresholding Estimators in High-Dimensional Gaussian Regression Models

Published 29 Jun 2011 in math.ST, stat.ME, stat.ML, and stat.TH | (1106.6002v3)

Abstract: We study the distribution of hard-, soft-, and adaptive soft-thresholding estimators within a linear regression model where the number of parameters k can depend on sample size n and may diverge with n. In addition to the case of known error-variance, we define and study versions of the estimators when the error-variance is unknown. We derive the finite-sample distribution of each estimator and study its behavior in the large-sample limit, also investigating the effects of having to estimate the variance when the degrees of freedom n-k does not tend to infinity or tends to infinity very slowly. Our analysis encompasses both the case where the estimators are tuned to perform consistent model selection and the case where the estimators are tuned to perform conservative model selection. Furthermore, we discuss consistency, uniform consistency and derive the uniform convergence rate under either type of tuning.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.