Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Mean curvature self-shrinkers of high genus: Non-compact examples (1106.5454v3)

Published 27 Jun 2011 in math.DG

Abstract: We give the first rigorous construction of complete, embedded self-shrinking hypersurfaces under mean curvature flow, since Angenent's torus in 1989. The surfaces exist for any sufficiently large prescribed genus $g$, and are non-compact with one end. Each has $4g+4$ symmetries and comes from desingularizing the intersection of the plane and sphere through a great circle, a configuration with very high symmetry. Each is at infinity asymptotic to the cone in $\mathbb{R}3$ over a $2\pi/(g+1)$-periodic graph on an equator of the unit sphere $\mathbb{S}2\subseteq\mathbb{R}3$, with the shape of a periodically "wobbling sheet". This is a dramatic instability phenomenon, with changes of asymptotics that break much more symmetry than seen in minimal surface constructions. The core of the proof is a detailed understanding of the linearized problem in a setting with severely unbounded geometry, leading to special PDEs of Ornstein-Uhlenbeck type with fast growth on coefficients of the gradient terms. This involves identifying new, adequate weighted H\"older spaces of asymptotically conical functions in which the operators invert, via a Liouville-type result with precise asymptotics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.