Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On General Solutions of Einstein Equations (1106.4660v1)

Published 23 Jun 2011 in physics.gen-ph and hep-th

Abstract: We show how the Einstein equations with cosmological constant (and/or various types of matter field sources) can be integrated in a very general form following the anholonomic deformation method for constructing exact solutions in four and five dimensional gravity (S. Vacaru, IJGMMP 4 (2007) 1285). In this letter, we prove that such a geometric method can be used for constructing general non-Killing solutions. The key idea is to introduce an auxiliary linear connection which is also metric compatible and completely defined by the metric structure but contains some torsion terms induced nonholonomically by generic off-diagonal coefficients of metric. There are some classes of nonholonomic frames with respect to which the Einstein equations (for such an auxiliary connection) split into an integrable system of partial differential equations. We have to impose additional constraints on generating and integration functions in order to transform the auxiliary connection into the Levi-Civita one. This way, we extract general exact solutions (parametrized by generic off-diagonal metrics and depending on all coordinates) in Einstein gravity and five dimensional extensions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.