Papers
Topics
Authors
Recent
2000 character limit reached

Approximation of Geodesics in Metabelian Groups

Published 20 Jun 2011 in math.GR and math.CO | (1106.4035v2)

Abstract: It is known that the bounded Geodesic Length Problem in free metabelian groups is NP-complete (in particular, the Geodesic Problem is NP-hard). We construct a 2-approximation polynomial time deterministic algorithm for the Geodesic Problem. We show that the Geodesic Problem in the restricted wreath product of a finitely generated non-trivial group with a finitely generated abelian group containing $Z2$ is NP-hard and there exists a Polynomial Time Approximation Scheme for this problem. We also show that the Geodesic Problem in the restricted wreath product of two finitely generated non-trivial abelian groups is NP-hard if and only if the second abelian group contains $Z2$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.