Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PRESY: A Context Based Query Reformulation Tool for Information Retrieval on the Web (1106.2289v1)

Published 12 Jun 2011 in cs.IR

Abstract: Problem Statement: The huge number of information on the web as well as the growth of new inexperienced users creates new challenges for information retrieval. It has become increasingly difficult for these users to find relevant documents that satisfy their individual needs. Certainly the current search engines (such as Google, Bing and Yahoo) offer an efficient way to browse the web content. However, the result quality is highly based on uses queries which need to be more precise to find relevant documents. This task still complicated for the majority of inept users who cannot express their needs with significant words in the query. For that reason, we believe that a reformulation of the initial user's query can be a good alternative to improve the information selectivity. This study proposes a novel approach and presents a prototype system called PRESY (Profile-based REformulation SYstem) for information retrieval on the web. Approach: It uses an incremental approach to categorize users by constructing a contextual base. The latter is composed of two types of context (static and dynamic) obtained using the users' profiles. The architecture proposed was implemented using .Net environment to perform queries reformulating tests. Results: The experiments gives at the end of this article show that the precision of the returned content is effectively improved. The tests were performed with the most popular searching engine (i.e. Google, Bind and Yahoo) selected in particular for their high selectivity. Among the given results, we found that query reformulation improve the first three results by 10.7% and 11.7% of the next seven returned elements. So as we can see the reformulation of users' initial queries improves the pertinence of returned content.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (24)

Summary

We haven't generated a summary for this paper yet.