Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Ranking via Sinkhorn Propagation (1106.1925v2)

Published 9 Jun 2011 in stat.ML, cs.IR, and cs.LG

Abstract: It is of increasing importance to develop learning methods for ranking. In contrast to many learning objectives, however, the ranking problem presents difficulties due to the fact that the space of permutations is not smooth. In this paper, we examine the class of rank-linear objective functions, which includes popular metrics such as precision and discounted cumulative gain. In particular, we observe that expectations of these gains are completely characterized by the marginals of the corresponding distribution over permutation matrices. Thus, the expectations of rank-linear objectives can always be described through locations in the Birkhoff polytope, i.e., doubly-stochastic matrices (DSMs). We propose a technique for learning DSM-based ranking functions using an iterative projection operator known as Sinkhorn normalization. Gradients of this operator can be computed via backpropagation, resulting in an algorithm we call Sinkhorn propagation, or SinkProp. This approach can be combined with a wide range of gradient-based approaches to rank learning. We demonstrate the utility of SinkProp on several information retrieval data sets.

Citations (142)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.