Papers
Topics
Authors
Recent
Search
2000 character limit reached

Computing all maps into a sphere

Published 31 May 2011 in cs.CG and math.AT | (1105.6257v4)

Abstract: Given topological spaces X and Y, a fundamental problem of algebraic topology is understanding the structure of all continuous maps X -> Y . We consider a computational version, where X, Y are given as finite simplicial complexes, and the goal is to compute [X,Y], i.e., all homotopy classes of such maps. We solve this problem in the stable range, where for some d >= 2, we have dim X <= 2d - 2 and Y is (d - 1)-connected; in particular, Y can be the d-dimensional sphere Sd. The algorithm combines classical tools and ideas from homotopy theory (obstruction theory, Postnikov systems, and simplicial sets) with algorithmic tools from effective algebraic topology (locally effective simplicial sets and objects with effective homology). In contrast, [X,Y] is known to be uncomputable for general X,Y, since for X = S1 it includes a well known undecidable problem: testing triviality of the fundamental group of Y. In follow-up papers, the algorithm is shown to run in polynomial time for d fixed, and extended to other problems, such as the extension problem, where we are given a subspace A of X and a map A -> Y and ask whether it extends to a map X -> Y, or computing the Z_2-index---everything in the stable range. Outside the stable range, the extension problem is undecidable.

Citations (47)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.