A Quantitative Version of the Gibbard-Satterthwaite Theorem for Three Alternatives
Abstract: The Gibbard-Satterthwaite theorem states that every non-dictatorial election rule among at least three alternatives can be strategically manipulated. We prove a quantitative version of the Gibbard-Satterthwaite theorem: a random manipulation by a single random voter will succeed with a non-negligible probability for any election rule among three alternatives that is far from being a dictatorship and from having only two alternatives in its range.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.