Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Period Integrals of CY and General Type Complete Intersections (1105.4872v7)

Published 24 May 2011 in math.AG, hep-th, math.CV, and math.DG

Abstract: We develop a global Poincar\'e residue formula to study period integrals of families of complex manifolds. For any compact complex manifold $X$ equipped with a linear system $V*$ of generically smooth CY hypersurfaces, the formula expresses period integrals in terms of a canonical global meromorphic top form on $X$. Two important ingredients of our construction are the notion of a CY principal bundle, and a classification of such rank one bundles. We also generalize our construction to CY and general type complete intersections. When $X$ is an algebraic manifold having a sufficiently large automorphism group $G$ and $V*$ is a linear representation of $G$, we construct a holonomic D-module that governs the period integrals. The construction is based in part on the theory of tautological systems we have developed in the paper \cite{LSY1}, joint with R. Song. The approach allows us to explicitly describe a Picard-Fuchs type system for complete intersection varieties of general types, as well as CY, in any Fano variety, and in a homogeneous space in particular. In addition, the approach provides a new perspective of old examples such as CY complete intersections in a toric variety or partial flag variety.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.