Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Posterior consistency of nonparametric conditional moment restricted models (1105.4847v2)

Published 24 May 2011 in math.ST and stat.TH

Abstract: This paper addresses the estimation of the nonparametric conditional moment restricted model that involves an infinite-dimensional parameter $g_0$. We estimate it in a quasi-Bayesian way, based on the limited information likelihood, and investigate the impact of three types of priors on the posterior consistency: (i) truncated prior (priors supported on a bounded set), (ii) thin-tail prior (a prior that has very thin tail outside a growing bounded set) and (iii) normal prior with nonshrinking variance. In addition, $g_0$ is allowed to be only partially identified in the frequentist sense, and the parameter space does not need to be compact. The posterior is regularized using a slowly growing sieve dimension, and it is shown that the posterior converges to any small neighborhood of the identified region. We then apply our results to the nonparametric instrumental regression model. Finally, the posterior consistency using a random sieve dimension parameter is studied.

Summary

We haven't generated a summary for this paper yet.